

昇降ロボット & 3Dスキャナ

~高所から広域・高精度な点群データ・画像を取得~

■特徴

- ・3Dスキャナを搭載した昇降ロボット 自動昇降型(3m-4.5m)とマニュアル昇降型(8.0m)との2タイプを用意
- ・高精度な点群データ・画像を、三脚搭載時に比べ、広範囲に取得可能
- ・移動が簡易な為、短時間での空間全体・構造物全体のデータを取得
- ・導入初日から利用できる簡単な操作性
- ・取得データは点検損傷画像との重ね合わせができ経年変化の把握が可能

■導入事例

社会インフラ (橋梁・道路等)

橋梁の場合:橋台・橋脚の3D計測を行い、取得したミリ単位の点群データをモデリングや出来形管理等、計測のオートメーション化に活用可。

工場プラント (建物・土地家屋)

設備や配管、屋根天井の現 況調査、移設・新設計画 書等の作成、搬入前の干渉 チェックに活用。狭隘エリア での高所計測に活用可。

■取得データの比較

■点群データ・画像の取得 ~高所 vs ドローン~

	コスト	品質	時間	安全性
昇降ロボット	計測機器 と同水準 の価格帯	三脚設置 時と同水 準の高品 質データ	短時間で 建物構築 物の観測 可	ドローン 飛行禁止 区域でも 利用可
ドローン	3Dスキャナ 搭載型は 数千万円 と高額	計測中の 静止精度 が低い	災害時等、 広範囲の 状況把握 に最適	強風によ る落下の 心配あり

■橋梁桁内の点群化

■搭載可能 3D スキャナ

- ・重量 5kg までの 3D スキャナを搭載可能
- Leica BLK360 when it has to be right
- ・他メーカにも広く対応(1/4 ビス固定)

■製品仕様

寸法	約 300 (W) ×500 (D) ×1815 (H) (初期高さ) [mm]
重量	約 33 [kg]
給電方式	外部より給電
駆動方式	左右独立駆動
通信方式	遠隔操縦方式·有線 LAN

※重量は、3D スキャナ含まず。