iXs Research Corp. Cool Robotics

<u>iMCs04 ソフトウェアマニュアルVer1.4</u>

株式会社イクシスリサーチ

目 次

1.	概9	要		3
2.	2	「ン	ドポイント	3
2	2. :	L =	⊑ンドポイント2	3
2	2. 2	2 =	⊑ンドポイント3	3
3	USB	ドラ	イバについて	5
3	. .	しう	デバイスのオープン,クローズ	5
3	3. 2	2 i	MCs04 のデータを取り込む	5
3	. :	3 i	MCs04 に制御データを書き込む	6
3	8. 4	4 L	ITTLE_ENDIAN, BIG_ENDIANについて	6
4.	5	デイン	ップスイッチの設定	8
5.	プロ	ュグラ	ラムの実行	9
5.	1	USB	デバイスの登録	9
5.	2	USB	ドライバのロード	9
5.	3	ボー	- ドの接続1	0
5.	4	終	了処理1	1
5.	5	プロ	ュグラムの実行1	2
5.	5.	1	センサ値の取得1	2
5.	5.	2	RCサーボモータの制御1	2
5.	5.	3	RC サーボモータの制御(i MCs04 の複数台同時接続)1	2

1. 概要

i MCs04 (H8/USB モータコントローラ)は USB 接続によるモータコントロール専用の超小型 ボードです. 同時に最大 32 個の i MCs04 を接続することが可能です.

本ボードの特徴

- ・ 超小型(45mm x 30mm)
- USB で PC から直接制御が可能.
- ・ 1枚のボードで最大4個のサーボモータが制御可能
- 制御周期は 20ms
- 市販の HUB を介すことで最大 32 枚を同時接続可能
- あらゆるモータ制御が出来るように、コントローラとモータドライバが分離

本マニュアルでは i MCs04 を扱う上で必要な知識を示し, Linux を使用したサンプルを記しています. ハードウェアに関しては, ハードウェアマニュアルをご参照ください.

2. エンドポイント

2.1 エンドポイント2

エンドポイント2は iMCs04 の各出力ピンから出力されるデューティ比を設定する目的で 使用されます. デューティ比は 0/50000 (0.0%) ~32767/50000 (65.536%) までの範囲で設定可 能です.

エンドポイント2はバルク転送で1パケットの大きさは64 バイト, 方向はOUT (PC→H8) です. パケットの中身はFig.1の構造体で表されます. Short のバイトオーダはリトルエン ディアン (インテルなど)です. 従ってインテル系の CPU では, そのまま扱うことが出来 ます. H8 内部はビッグエンディアンですが, 転送前にリトルエンディアンに変換していま す.

```
struct ccmd {
```

```
unsigned short duty[4]; // デューティ比設定用(0~32767)
char dumy[56];
```

};

Fig.1 エンドポイント2の ccmd 構造体

2.2 エンドポイント3

エンドポイント3は iMCs04 の各入力ピンから A/D 変換を行った値, また iMCs04 の ID を 取得する目的で使用されます.

エンドポイント3はバルク転送で1パケットの大きさは64バイト,方向はIN(H8→PC) です.パケットの中身は次の構造体で表されます.uin構造体はFig.2のようになっていま す.

struct uin {

```
unsigned short time // 1ms 周期のカウンターの値(0~2047)
unsigned short magicno; // デバイス ID
unsigned short ad[4]; // A/D コンバータの値(10bit)
char dumy[52];
```

};

```
Fig.2 エンドポイント3のuin構造体
```

- 3 USBドライバについて
- 3.1 デバイスのオープン、クローズ

USB デバイスをオープンするためには、 プログラム内で

int fd;

fd = open("/dev/urbtc0", 0_RDWR);

と記述します. デバイスのオープンに失敗したときは, 戻り値-1 が返ります. クローズす るためには

close(fd)

とします.

プログラムは以下のようになります.

char *dev = "/dev/urbtc0";

```
if (argc>1) dev = argv[1];
```

```
if ((fd = open(dev, 0_RDWR)) == -1) {
```

```
fprintf(stderr, "%s: Open error¥n", dev);
```

```
exit(1);
```

}

3. 2 iMCs04 のデータを取り込む

iMCs04 からのデータを連続して取り込むには、まず

ioctl(fd, URCC_GET_DATA);

を実行しておく必要があります. (一度実行すれば,変更があるまで有効)その後,

read(fd, &buf, sizeof(buf));

で値を取得します.ここで buf はユーザー定義のエンドポイント3の uin 型構造体です. プログラムは以下のようになります.

struct uin buf;

```
if (ioctl(fd, URCC_GET_DATA) < 0) {
    fprintf(stderr, "ioctl: URCC_GET_DATA error¥n");
    exit(1);
}
if ((i = read(fd, &buf, sizeof(buf))) != 64) {
    fprintf(stderr, "Warning: read size mismatch (%d!=%d).¥n", i,sizeof(buf));
    continue;
}</pre>
```

3.3 iMCs04 に制御データを書き込む

iMCs04 に制御データ(エンドポイント2の comd)を書き込むには、まず

ioctl(fd, URCC_DUTY_SET);

を実行しておく必要があります. (一度実行すれば,変更があるまで有効)その後,

write(fd, &obuf, sizeof(obuf));

3. 4 LITTLE_ENDIAN, BIG_ENDIANについて

コンピュータは2バイト以上のデータを扱う際に1バイトごとに分割して処理しますが、 これを最下位のバイトから順番に記録/送信する方式をリトルエンディアン(LITLE ENDIAN)と呼び、最上位のバイトから順番に記録/送信する方式をビッグエンディアン(BIG ENDIAN)と呼びます. Intel 系のプロセッサはリトルエンディアン, Motorola 系のプロセッ サはビッグエンディアンのため、PC から送信する際に、データの上位バイトと下位バイト の入れ替えの必要が生じる場合があります.

iMCs04 は LITTLE ENDIAN 形式でデータを扱っているため、Motorola 系のプロセッサを持 つコンピュータと接続する場合、データの入れ替えが必要です.例えば、制御データ(ccmd 型構造体)の duty に 0x1380 を代入する場合、以下のような記述になります.

unsigned char duty_num = 0x1388;

#if __BYTE_ORDER == __LITTLE_ENDIAN

obuf.duty[0] = duty_num;

#else

obuf.duty[0] = (0xff & duty_num) <<8 | (0xff00 & duty_num) >>8;

#endif

ただし、使用する PC が、どちらか一方に決まっている場合は、どちらか一方を記述するだけで正しく処理されます.

4. ディップスイッチの設定

i MCs04 上のディップスイッチの Pin1~5 の操作により i MCs04 に固有の ID 番号を振ることが出来ます. 全てのピンを 0 とすることで ID は 0x00 (0) になり, 全てのピンを 1 にすることで ID は 0x1f (31) になります.

	Pin					
U U	1	2	3	4	5	
0	0	0	0	0	0	
1	1	0	0	0	0	
2	0	1	0	0	0	
3	1	1	0	0	0	
4	0	0	1	0	0	
:	•••		•••	•••	•••	
30	0	1	1	1	1	
31	1	1	1	1	1	

5. プログラムの実行

本章では、LINUX (Kernel 2.4 以上)で iMCs04 を操作する方法を説明します. 以下の操作 は全て root 権限で行ってください.

≻su-l

(※ Ubuntu 等で行う場合は下記の様行ってください.)

> sudo (*コマンド*)

5. 1 USBデバイスの登録

USB デバイスを登録します.本操作は,各 PC において最初の1回だけ行います. コマンドライン上で以下のように入力してください.

>	mknod	/dev	/urc0	C	180	140
>	chmod	666	/dev/u	uro	:0	

5. 2 USBドライバのロード

ファイルがあるディレクトリに移動し, USB のモジュールをロードします. まだ i MCs04 を USB ポートに接続しないでください.

> cd /home/user1/iMCs04/driver/

> insmod urbtc.o

(※ Kernel 2.6 用のドライバを使用する場合,下記のようになります.)

> insmod urc.ko

ここで,正常にモジュールがロードされているかを確認します.

> Ismod

と入力し,

Module	Size	Used	by
urbtc	7360	0	(unused)

と表示されることを確認してください.

^{(※} Kernel 2.6 用のドライバを使用する場合,下記のようになります.)

Module	Size	Used by
urc	5557	0

5.3 ボードの接続

ボードを接続します.

セルフパワー方式のUSB HUBを中継可

接続後,

> dmesg

と入力し,

usb.c: registered new driver urbtc	
urbtc.c: H8 based USB motor controller driver v0.1	
hub.c: USB new device connect on bus1/2, assigned device number	2
urbtc.c: USB robot controller now attached to urbtcO	

と表示されることを確認してください. また, HUB を中継する場合は, HUB の接続後 (HUB には iMCs04 をまだ接続しないでください),

> dmesg

と入力し,

ub.c: USB new device connect on bus1/2, assigned device number 3

hub.c: USB hub found

hub.c: 4 ports detected

と表示されることを確認してください.

次に iMCs04 が正しく認識されているかを確認するために,

>./h8test と入力し、

Vendor xxxxxxxx

Product xxxxxxxx

と表示されることを確認してください.

5.4 終了処理

最後に、iMCs04をUSBポートから取り外す際、dmesgで、

usb.c: USB disconnect on device 2

urbtc.c: urbtcO now disconnected

と表示されることを確認してください. その後,

> rmmod urbtc

と入力し、USB ドライバを解放します.

(※ Kernel 2.6 用ドライバを使用する場合, 下記のように入力します.)

> rmmod urc.ko

5.5 プログラムの実行

5.5.1 センサ値の取得

プログラムを実行します. サンプルで添付されているセンサ読込みプログラム uread を 実行する場合は,

> ./uread

と入力します.

CH0:0xFFC0	CH1:0xFFC0	CH2:0xFFC0	CH3:0xFFC0
CHO:0xFFC0	CH1:0xFFC0	CH2:0xFFC0	CH3:0xFFC0
CH0:0xFFC0	CH1:0xFFC0	CH2:0xFFC0	CH3:0xFFC0

のような値が表示されます.

左から, buf.ad[0], buf.ad[1], buf.ad[2], buf.ad[3]を表しています.

5.5.2 RCサーボモータの制御

プログラムを実行します. サンプルで添付されている RC サーボ出力プログラム sample を実行する場合は,

> make sample

>./sample

と入力します.

5.5.3 RCサーボモータの制御(iMCs04の複数台同時接続)

2 台目以降のコントローラを接続する場合は,以下のように接続する数だけ USB ドライバ を追加します. 本操作は, 各 PC において最初の1回だけ行います.

> mknod /dev/urc1 c 180 141

> chmod 666 /dev/urc1

ここで, 180 は USB ドライバのメジャーNo, 141 はマイナーNo です.

3台同時接続の場合は以下のようになります.

>	mknod	/dev/urc1 c 180 141	
>	chmod	666 /dev/urc1	
>	mknod	/dev/urc2 c 180 142	
>	chmod	666 /dev/urc2	

続いてプログラム(2 台接続時)を実行します. サンプルで添付されている 2 台同時接続 RC サーボモータ制御プログラム samplem を実行する場合は,

> make samplem

> ./samplem

と入力します.

改訂履歴	
2002 年 10 月	初版
2003年1月	Ver1.1
	・ピンファンクション訂正
	・ドライバ名訂正
	・ドライバのマイナー番号訂正
2009 年 9 月	Ver1.2
	・表記ミス訂正
	・パケット構造訂正
	・住所変更
2010 年 4 月	Ver1.3
	・ハードウェア部削除
2011年1月	Ver1.4
	・Kernel 2.6 用のコマンドを追加

お問合せ(お問い合わせはメールにてお願いいたします)

株式会社イクシスリサーチ E-mail : info@ixs.co.jp

本社所在地 〒212-0055 神奈川県川崎市幸区南加瀬 5-18-16

横浜工場 〒230-0051 神奈川県横浜市港北区箕輪町 2-12-29

本書の内容の一部または全部を無断転載・無断複写することは禁止されています. 、本書の内容については将来予告なしに変更することがあります.

この取扱説明書は、再生紙を使用しています.